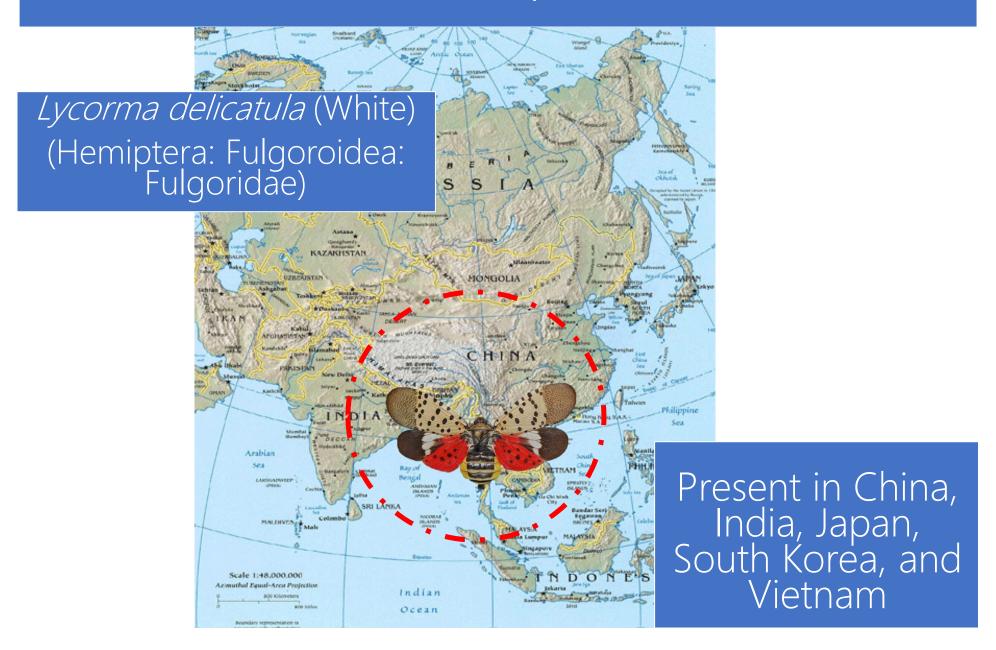


Spotted Lanternfly: a New Invasive

Danielle Kirkpatrick and Tracy Leskey USDA-ARS

Appalachian Fruit Research Station



SLF is an Invasive Species in the USA

SLF first detection and quarantine

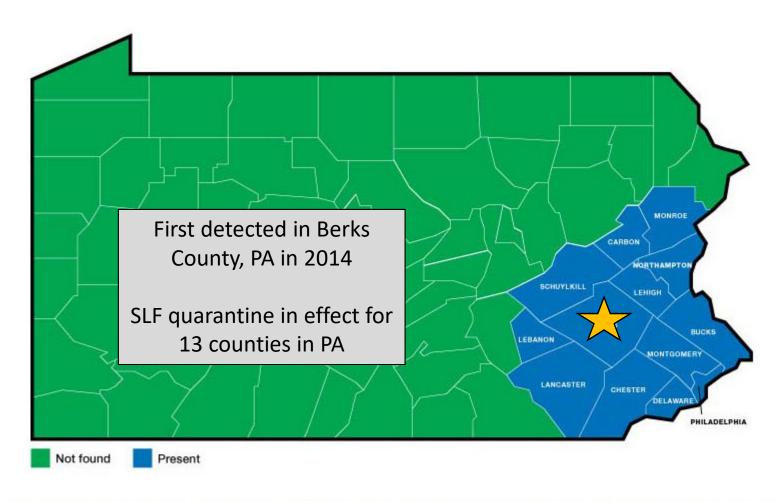
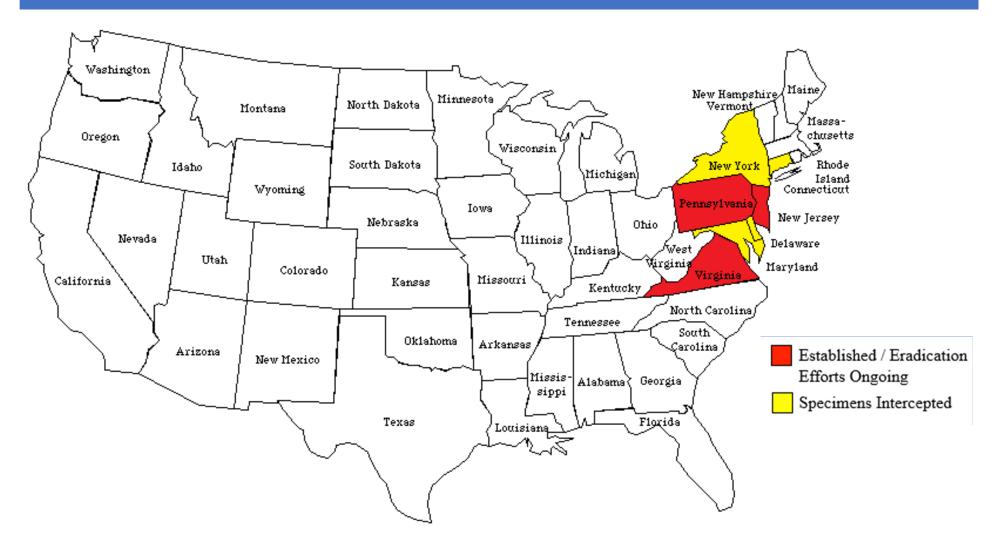
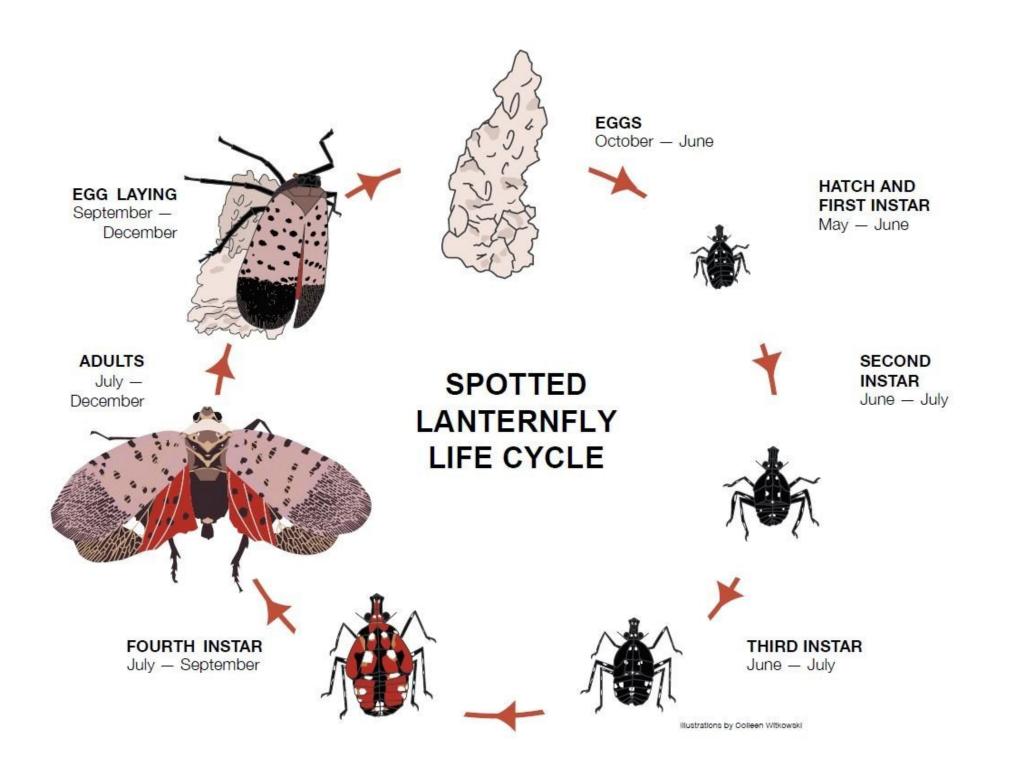
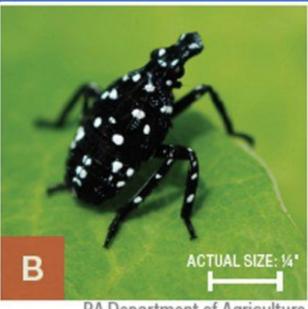




Figure 2. The distribution as of September 20, 2018, of SLF in Pennsylvania, indicated in blue. Check the Pennsylvania Department of Agriculture's website for updated distribution information.

Current Distribution of SLF in the USA


Established populations in Pennsylvania, New Jersey and Virginia Specimens Intercepted in New York, Delaware, Maryland and Connecticut

How to Identify the Invasive SLF

PA Department of Agriculture

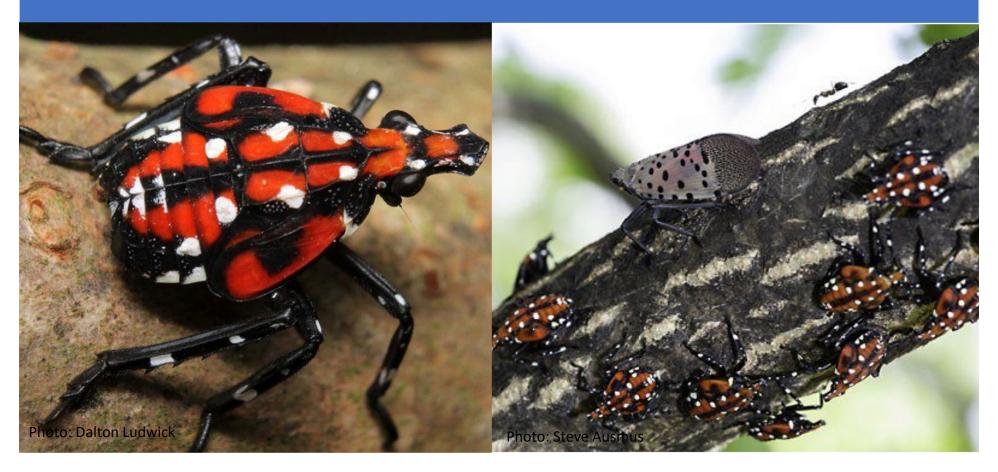
PA Department of Agriculture

PA Department of Agriculture

PA Department of Agriculture

- A. Egg masses
- B. Early nymph
- C. Late nymph
- D. Adult, wings closed
- E. Adult, wings open

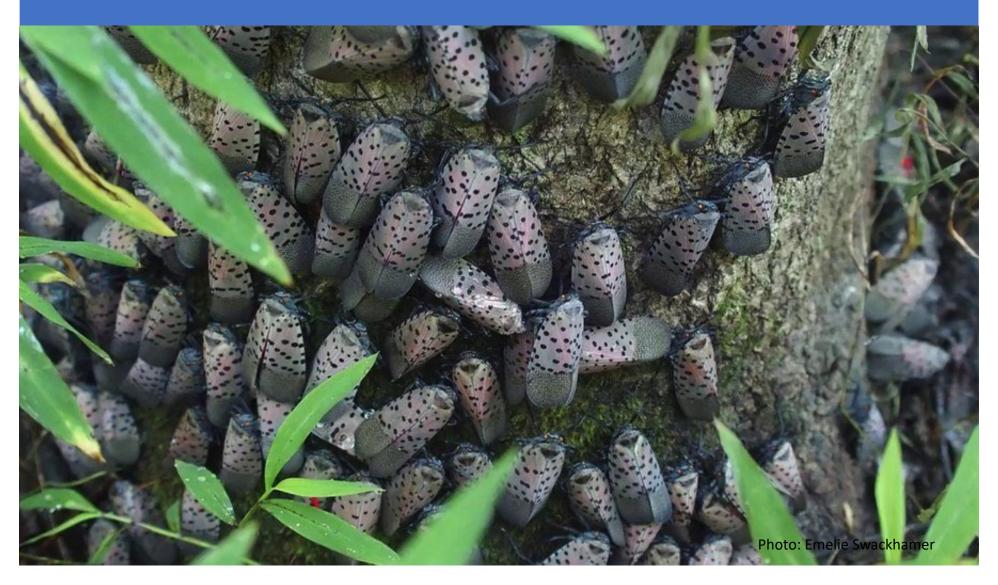
Nymphal Stages of SLF


Nymphal Stages of SLF

- Early stage nymphs (1st-3rd instars) have black bodies and legs with white spots
- Only a few centimeters long
- Strong jumpers; will jump when frightened
- Tend to feed on the new growth of a plant, such as stems and foliage

Nymphal Stages of SLF

- Late stage nymphs (4th instars) have bright red bodies with black stripes and white spots
- Last nymphal stage before becoming adults
- About ½ inch long
- Strong jumpers; will jump when frightened


Adult SLF

- Adults are about 1" long
- Females tend to be slightly larger than the males

Adult SLF

Group of adult SLF feeding at the base of a tree

Adult SLF Feeding on Grapevine Video: Erica Smyers, PSU

Adult SLF

- Early season (left) vs. late season (right) female SLF
- Females build up fat bodies towards end of summer to prepare for egg laying

Potential to Cause Economic Damage

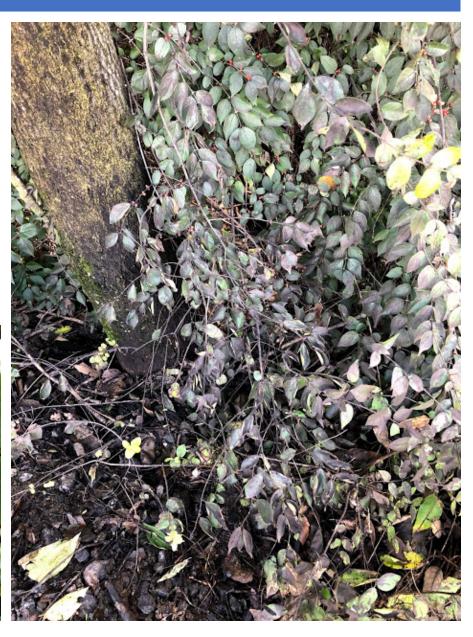
Direct effects

- Phloem feeders; reported to feed on over 65 species of plants
- Knowledge gaps in host range in the US
- Projected to become a serious pest of timber, ornamental trees, tree fruit, stone fruit, grapes, hops and small fruit such as blueberries
- Feeding could potentially shock trees and cause decline

Spotted lanternfly feeds on soybean

Spotted lantern fly feeds on corn

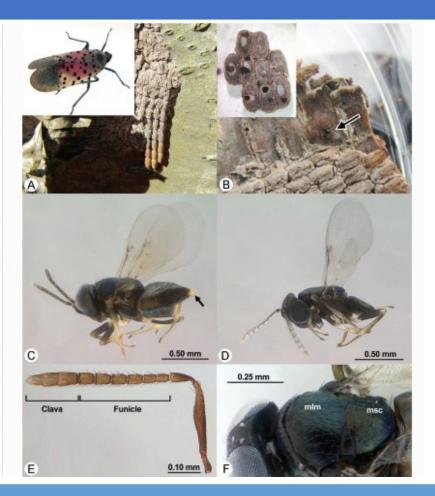
Spotted lanternfly feeds on alfalfa



Potential to Cause Economic Damage

- Indirect effects of feeding
 - Excrete large amounts of honeydew while feeding
 - Sooty mold outbreak on the leaves and fruit
 - May exacerbate yellow jacket problems

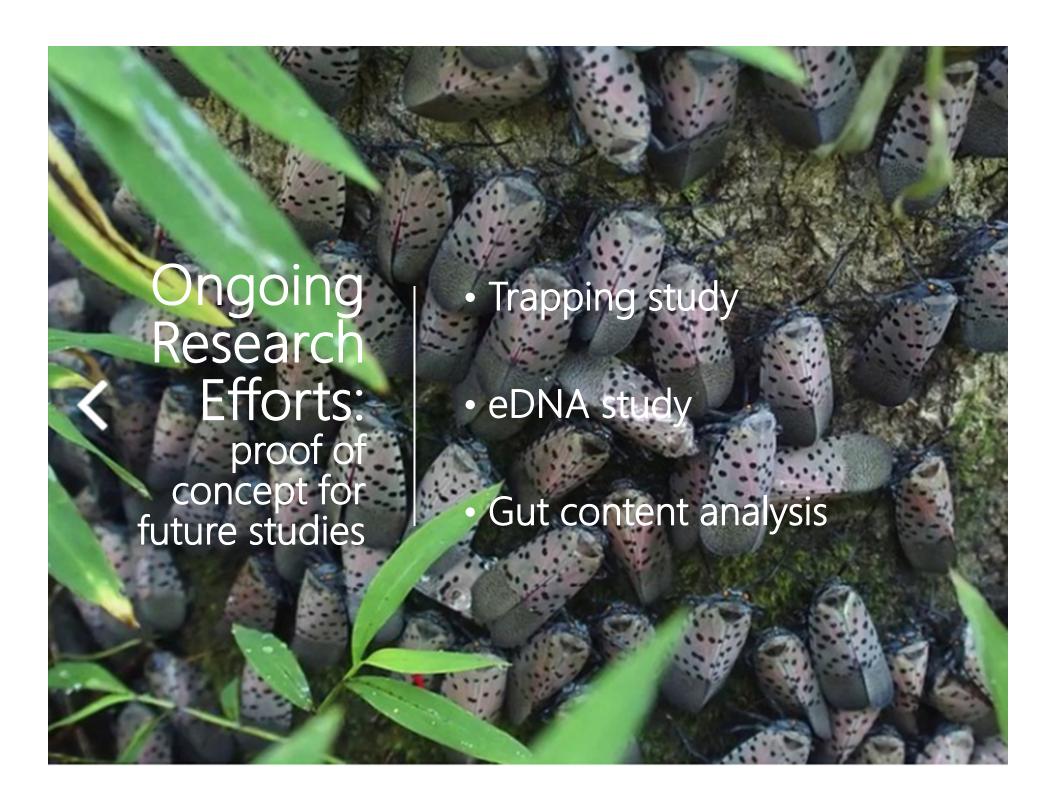
Host plants	Family	Korean name	Stage	Degree of damage ¹		
Actinidai chinensis	Actinidiaceae	양다래	nymph	+++		
Rhus javanica	Anacardiaceae	붉나무	nymph	+++		
Rhus verniciflua	Anacardiaceae	웃나무	nymph	++		
Aralia elata	Araliaceae	무릅나무	nymph	+++		
Aralia cordata	Araliaceae	땃두릅나무	nymph	+++		
Metaplexis japonica	Asclepiadaceae	박주가리	nymph	+		
Almus hirsuta	Betulaceae	산오리나무	nymph	+		
Betula platyphylla	Betulaceae	자작나무	adult	+++		
Arctium lappa	Compositae	우엉	nymph	++		
Quercus aliena	Fagaceae	갈참나무	nymph	++		
Juglans mandshurica	Juglandaceae	가래나무	adult, nymph	++++		
Juglans nigra	Juglandaceae	흑호두나무	nymph	++		
Juglans sinensis	Juglandaceae	호두나무	nymph	+		
Pterocarya stenoptera	Juglandaceae	중국굴피나무	nymph	+		
Maackia amurensis	Leguminosae	다릅나무	nymph	+		
Magnolia obovata	Magnoliaceae	일본목련	nymph	++		
Magnolia kobus	Magnoliaceae	목련	nymph	+		
Cedrela fissilis	Meliaceae	유럽참죽나무	adult, nymph	++++		
Toona sinensis	Meliaceae	참죽나무	adult, nymph	++++		
Toona sinensis 'Flamingo'	Meliaceae	호주참죽나무	adult, nymph	++++		
Morus alba	Moraceae	뽕나무	nymph	++		
Morus bombycis	Moraceae	산뽕나무	nymph	++		
Rosa hybrida	Rosaceae	장미	nymph	+		
Rosa multiflora	Rosaceae	찔레나무	nymph	++		
Rosa rugosa	Rosaceae	해당화	nymph	++		
Rubus crataegifolius	Rosaceae	산딸기나무	nymph	++		
Sorbus commixta	Rosaceae	마가목	nymph	+		
Sorbaria sorbifolia	Rosaceae	쉬땃나무	nymph	++		
Evodia danielii	Rutaceae	심나무	adult, nymph	++++		
Phellodendron amurense	Rutaceae	황벽나무	adult, nymph	++++		
Populus koreana	Salicaceae	물화철나무	adult	++		
Philadelphus schrenckii	Saxifragaceae	고광나무	nymph	++		
Picrasma quassioides	Simaroubaceae	소태나무	adult, nymph	++++		
Ailanthus altissima	Simaroubaceae	가죽나무	adult, nymph	++++		
Firmiana simplex	Sterculiaceae	벽오동	nymph	++		
Sprax obassia	Styracaceae	쭈동백나무	nymph	+		
Styrax japonica	Styracaceae	때죽나무	adult, nymph	++		
Angelica dahurica	Umbelliferae	구릿대	nymph	+		
Parthenocissus quinquefolia	Vitaceae	미국답쟁이덩굴	adult, nymph	****		
Vitis conservensis	Vitaceae	머무	adult, nymph	++++		
Vitis vinifera	Vitaceae	¥ E	adult, nymph	++++		


Degree of damage; ++++: very serious, +++: serious, ++: middle, +: weak

- Host list from researchers in South Korea
- Includes grape, walnut and some rosaceous plants
- Don't have a good handle on the impacts on tree fruit
- Future studies will aim to narrow down US host range and obligatory hosts for nymph development and egg laying

Potential Biological Control Agents

Anastatus orientalis



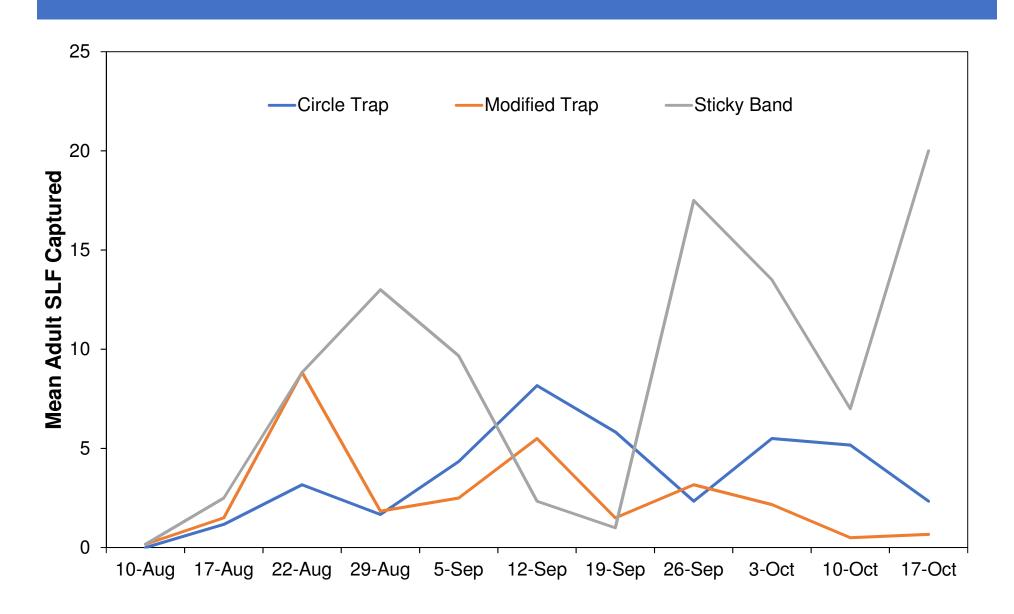
<u>Ooencyrtus kuvana</u>

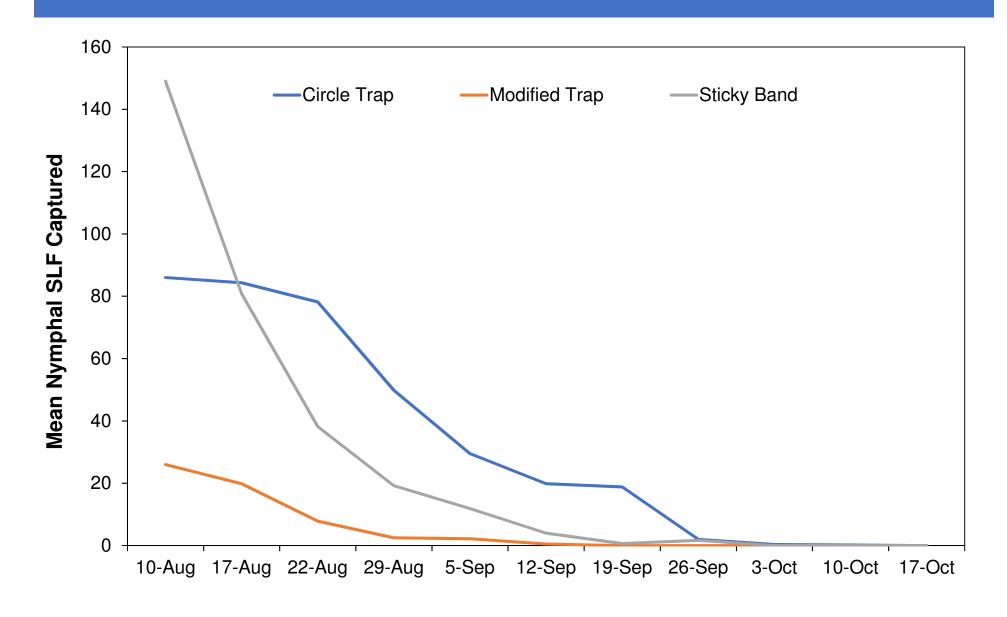
Present in North America
Introduced for biological control of gypsy moth
Has been recovered from eggs in PA

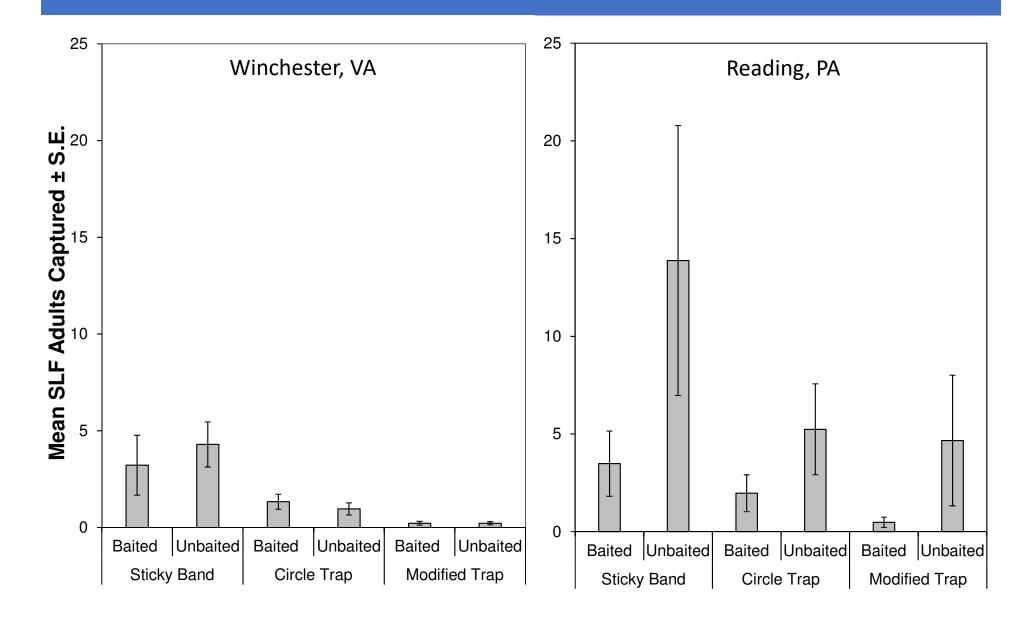
What don't we know?

- We have very little information on their biology, ecology and behavior
- We have no monitoring tools for this species in any cropping system
- What is the host range? Is tree of heaven an obligatory host? Must they feed on this species in order to complete their nymphal development or for adults to reproduce?
- Do SLF feed on apple? What impact will their feeding on have on young trees/vines and on developing fruit buds? Do they transmit diseases?
- What are best materials for managing adults and nymphs?
- Biological control?

Preliminary Trapping Study




- 2 sites Winchester, VA (lower population) and Reading, PA (higher population density)
- 3 trap types, baited and unbaited
- Traps checked weekly and captures recorded
- Sticky bands and lures replaced weekly


Adult Captures

Nymph Captures – Reading, PA

Trapping Study Results

Sticky band traps: effective for capturing nymphs and adults throughout season

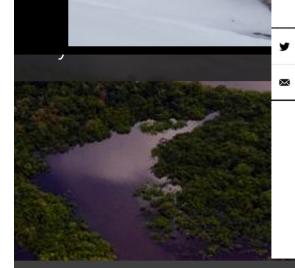
Non-target captures of vertebrates and invertebrates creates a potential problem with using sticky bands

Better options moving forward?

ANIMALS VIDEO

How DNA from snow helps scientists track elusive animals

Researchers are using environmental DNA to help monitor and measure populations of rare snow-dwelling species like Canadian lynx.



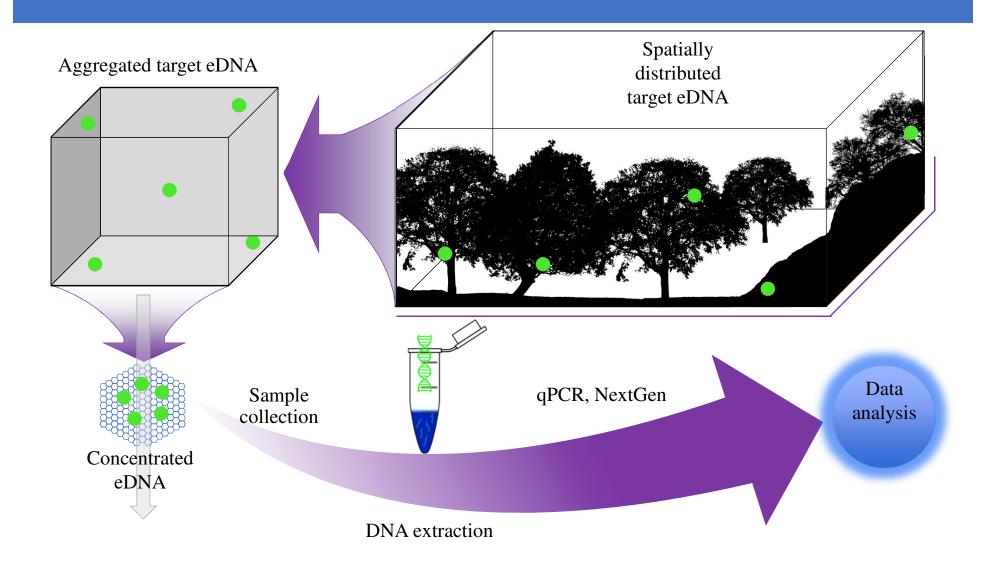
BIOLOGY

Scientists Pick Up the Genetic Scent of Stinkbug Invaders

New method that tests for insect DNA on farm produce could "revolutionize" agricultural pest surveillance

By Daniel Ackerman on July 12, 2018

READ THIS NEXT



You're about to g bugs, America. B won't be man-fac

Tick Discovery Hi How Few Answer about These Pest

eDNA Collection Methods

eDNA Collection Methods:

- 1. Aggregate target DNA using water
 2. Isolate eDNA using qPCR
 3. Compare against database of known DNA sequences to identify the organism that left it behind

Preliminary eDNA Results

Week 1	Site 1	Site 2	Site 3
Apple			X
Grape			Х
Peach	Х		
Tree of Heaven			Х
Walnut			Х

Week 2	Site 1	Site 2	Site 3
Apple			
Grape		Х	
Peach			X
Tree of Heaven	Х	Х	
Walnut	X		Х

Week 3	Site 1	Site 2	Site 3
Apple			
Grape			
Peach	X		
Tree of Heaven			
Walnut			

Positive SLF eDNA detection Negative SLF eDNA detection No sample collected

Gut Content Analysis Methods

Gut Content Analysis of a Phloem-Feeding Insect, Bactericera cockerelli (Hemiptera: Triozidae)

W. Rodney Cooper

M. David R. Horton, Thomas R. Unruh, Stephen F. Garczynski

Environmental Entomology, Volume 45, Issue 4, 1 August 2016, Pages 938–944, https://doi.org/10.1093/ee/nvw060

Published: 06 June 2016 Article history ▼

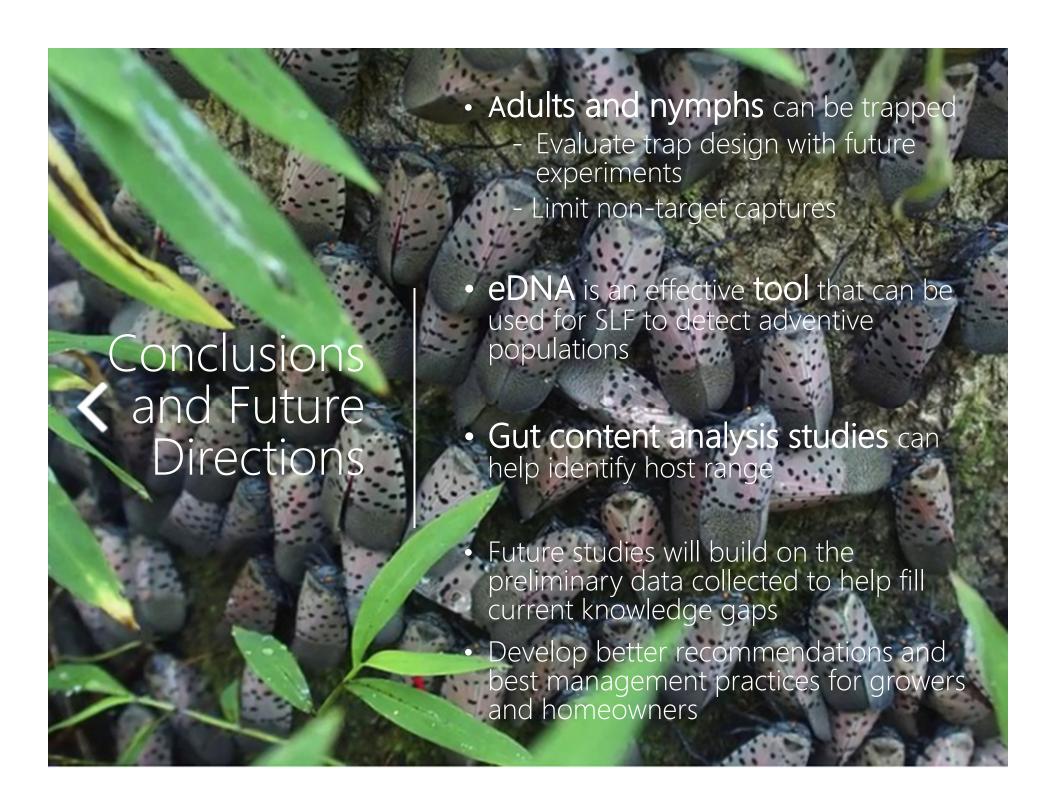
- Plant DNA can be detected in phloem-feeding insects
- PCR-based methods to identify what plant species had previously been fed upon
- Gut content analysis is extremely sensitive to even the smallest amount of DNA
- Previous studies used whole insects; due to large size of SLF have to dissect out the guts for analysis
- Able to see visible amplicons using ITS
- Able to get a number of plant sequences from SLF specimens

Gut Content Analysis Preliminary Results

Plant	Identity	Sequences
Portulaca sp. (Purslane?)	99.7% pairwise identity	4/19 sequences
Solanum spp. (Nightshade plants)	95.7% identity	2/19
Ailanthus altissima (Tree of Heaven)	99.5% identity	1/19 sequences
<i>Medicago</i> spp. (Alfalfa?)	100% identity	1/19 sequences

- Able to see visible amplicons using ITS
- Able to get a number of plant sequences from SLF specimens
- Need dedicated dissection area for SLF to prevent contamination
- Future studies can help narrow down host range

Ongoing Research and Outreach Efforts


Insecticides for contro applications

4L

applications		ture spe	rttea iai	iterriny					
		Registered insecticides can be effective ¹			(
Trade name	Active ingredient	Class	Avoid m	oving g	ravid				
Imidan 70WP	phosmet	Orgar	Avoid m masses		iable egg				
Scorpion 35SL	dinotefuran	Neoni	1999 17 500 17 17 17	<i>us altiss</i> bicide ^{1,3}	$\overline{}$				
Brigade 10WSB	bifenthrin	Pyreti	"trap" tr insectici		n systemic			<u> </u>	ļ
Mustang Maxx 0.8EC	zeta- cypermethrin	Pyrethroid		4 fl. oz.	С, І	1	12	<7	Yes, 2(ee)
Closer 2SC	sulfoxaflor	Sulfox	Sulfoximine		S, C, I	7	12	7	2(ee) pendir
Actara 25WDG	thiamethoxam	Sulfoximine Neonicitinoid		3.5 oz	S, C, I	5	12	7	Yes, 2(ee)
Assail 30SG	acetamiprid	Neonio	Neonicitinoid		S, C, I	3	48	<7	Yes, 2(ee) nymph only
Carbaryl	carbaryl	Carbai	mate	2 qt	С, І	7	12	7	No

	Jan.	Feb.	March	April	iviay	June	July	Aug.	Sept.	UCI.	INOV.	Dec.
Destroy egg masses												
Use sticky bands to cap- ture spotted lanternfly												
Registered insecticides can be effective ¹												
Avoid moving gravid (fertilized) females ²												
Avoid moving viable egg masses ²												
Treat most tree-of-heaven (Ailanthus altissima) trees with herbicide1.3												
Treat tree-of-heaven "trap" trees with systemic insecticides ^{1,4}												

Acknowledgements

- Leskey Lab
- Demian Nunez
- Layne Leake
- Laura Nixon
- Aya Ibrahim
- Heather Leach, PSU Extension
- Julie Urban, PSU
- Mark Sutphin, VT Extension
- Anne Nielsen, Rutgers Univ
- Julie Lockwood, Rutgers Univ
- Dina Fonseca, Rutgers Univ
- Rafael Valentin, Rutgers Univ
- Rodney Cooper, USDA-ARS

